

Prelaunch and In-flight Radiometric Calibration of the Atmospheric Infrared Sounder (AIRS)

Thomas S. Pagano^a, Hartmut H. Aumann^a, Denise E. Hagan^a, Kenneth Overoye^b

^aJet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91109 818-354-4605

^bBAE SYSTEMS, Lexington, MA 02421-7306

6/19/03

OVERVIEW OF RADIOMETRIC CALIBRATION IEEE PAPER

- Presents radiometric transfer equation from first principles
 - · Includes gain and offset correction using OBC BB and SV
 - · Includes scan angle dependent polarization effects of scan mirror
- Equations are simple
 - · No crosstalk, stray light, fixed pattern noise, etc.
- Discusses and presents pre-flight calibration parameters
 - OBC Emissivity and Temperature Offset Correction Terms
 - Nonlinearity
 - · Polarization Effects
- Estimates Uncertainty
 - Uses independent LABB tests to demonstrate residual errors
 - Demonstration used L1B testbed
 - Systematic (Bias) and Random (Noise) estimates presented
- Paper submitted to IEEE for review

RADIOMETRIC TRANSFER EQUATIONS

$$N_{sc,i,j} = \frac{a_o(\square_j) + a_{1,i}(dn_{i,j} \square dn_{sv,i}) + a_2(dn_{i,j} \square dn_{sv,i})^2}{1 + p_r p_t \cos 2(\square_j \square \square)}$$

$$a_o(\square_j) = P_{sm} p_r p_t [\cos 2(\square_j \square \square) + \cos 2\square \square]$$

$$a_{1,i} = \frac{N_{OBC,i}(1 + p_r p_t \cos 2\square) \square a_o(\square_{OBC}) \square a_2(dn_{obc,i} \square dn_{sv,i})^2}{(dn_{obc,i} \square dn_{sv,i})}$$

 $N_{\text{sc.i.i}} = \text{Scene radiance of the } i^{\text{th}} \text{ scan and } j^{\text{th}} \text{ footprint } (mW/m^2\text{-sr-cm}^{-1})$

 $Psm_{=}$ Plank radiation function evaluated at the temperature of the scan mirror.

 $N_{OBC,i}$ = Radiance of the On-Board Calibrator (mW/m²-sr-cm⁻¹)

i = Scan Index, $j = Footprint Index (1 to 90), <math>\square = Scan Angle$. $\square = 0$ is nadir.

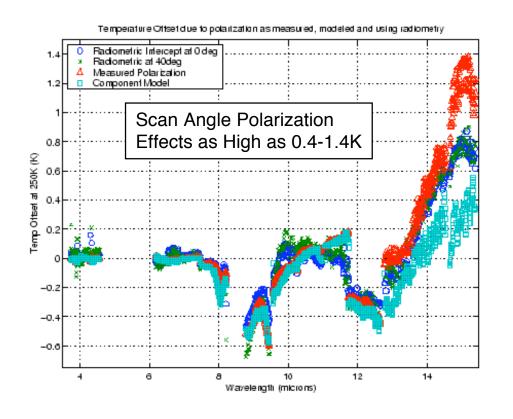
 $dn_{i,i}$ = Raw Digital Number in the Earth View for the i^{th} scan and j^{th} footprint

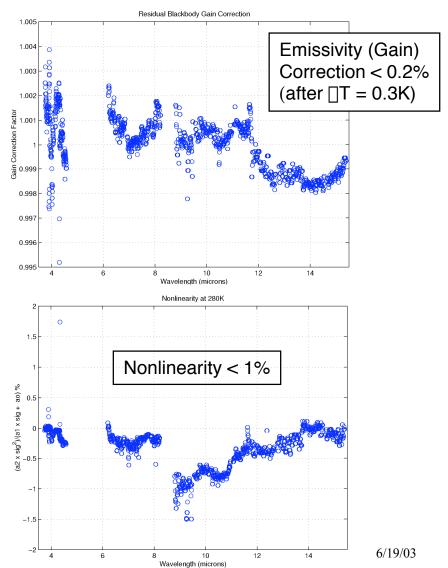
 $dn_{sv,i}$ = Space view counts offset. Algorithmic combination of 8 AIRS raw space view digital numbers.

 a_0 = Radiometric offset. This is nonzero due to polarization and is scan angle dependent.

 $a_{1,i}$ = Radiometric gain. a_2 = Nonlinearity Correction

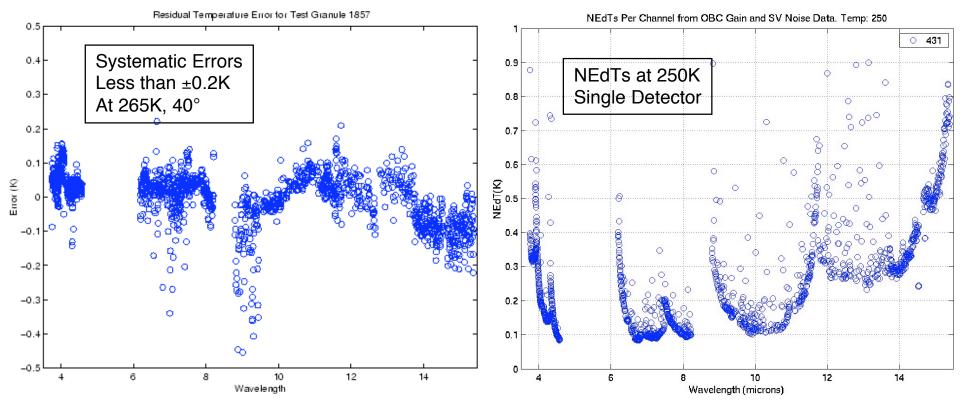
 $p_r p_t$ = Product of the polarization factor from the scan mirror and the spectrometer


☐ = Phase of the polarization of the AIRS spectrometer



PAPER HIGHLIGHTS

PRE-FLIGHT CAL PARAMETERS


PAPER HIGHLIGHTS

RESIDUAL ERRORS

Systematic Errors (Bias)

Random Errors (Noise)

AIRS CALIBRATION TEAM MEETING Agenda

Special Testing Status/Plans

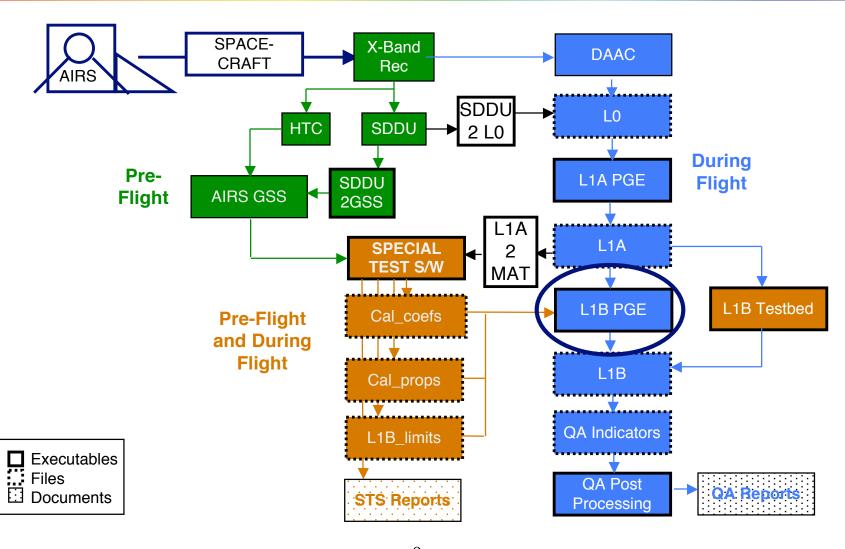
- 12:00 PM: In-Flight Calibration Plan: T. Pagano
- 12:30 PM: Staffing and Processing Plans: T. Pagano
- 12:45 PM: C3:Channel Spectra Phase Test Results from TRW: M. Weiler
- 1:00 PM: C7:Space View Noise Test Results from TRW: M. Weiler
- 1:15 PM: L1A2MAT and Flight STS Interface: S. Licata

PGE Verification and In-Flight QA Trending

- 1:30 PM: L1B PGE Radiometric Verification: T. Hearty
- 1:45 PM: In-Flight Calibration Flag Monitoring: T. Hearty
- 2:00 PM: L1B PGE Spectral Verification: S. Gaiser
- 2:15 PM: In-Flight Spectral QA Monitoring/Trending: S. Gaiser
- 2:30 PM: In-Flight Radiometric QA Monitoring/Trending: Broberg
- 2:45 PM: Action Items
- 3:00 PM: Adjorn

IN-FLIGHT CALIBRATION OBJECTIVES AND PLANS

AIRS INSTRUMENT CALIBRATION OBJECTIVES



- Configure the AIRS instrument for best performance
 - · Select A and B detector weights (gains)
 - · Align AMA for best radiometric and spectral performance
 - · Adjust temperature for best match of spectral centroids
 - Select radiation circumvention thresholds to minimize effects of radiation on the noise performance
- Characterize the AIRS instrument in the on-orbit environment
 - Detect gain changes and icing effects
 - Characterize noise performance (amplitude and character)
 - · Characterize radiometric response and stray light
 - Characterize the spectral response centroids and channeling
- Trend the performance over time and space
 - Use L1B QA parameters to trend the spectral, spatial and radiometric performance of the instrument over time and space

TOOLS DEVELOPED PRE-FLIGHT WILL BE USED TO EVALUATE AND TREND

SPECIAL TEST SEQUENCE PLANS (STS)

SPECIAL TEST PLANS

- All special tests performed at TRW in Thermal Vacuum
- Test results analyzed and presented in TVAC Data Review (see http://airsteam.jpl.nasa.gov/calibration/Memos_Plans/TVAC_results.pdf)
- We will not get into test results today except for C3 (Spectral)
- All special test sequences expedited. This means L1A at JPL in less than 4 hours.
- All tests require quick turnaround of analysis in order to give feedback to the operations team for possible retest.
- Science Data Processing System Team must process to L1A ASAP
- Use L1A2MAT to convert to standard matlab format. Also use new tools for detecting valid scans and missing packets
- Analyst will be called as soon as L1A available to begin analysis

TWELVE SPECIAL TEST OBTAIN KEY MEASUREMENTS

Test ID	Name	Description	Measurement Obtained
		Establish normal DCR and Lamp operation.	Focal Plane Model
	Normal Mode / Special	Flag data for special events	Geolocation
AIRS-C1	Events	Earth Scene targets of opportunity.	SST Acquisitions
			Radiometric Gains
		Cycles through A, B and A/B Optimum Gains and	NEdT
AIRS-C2	Guard Test	acquires data.	Spectral FP Model (Parylene)
AIRS-C3	Channel Spectra Phase	Heat and cool spectrometer by ±1K	Phase of Channel Spectra
		AMA is moved to the desired x (spatial) and y	AB Balance
AIRS-C4	AMA Adjust	(spectral) position.	Spectral Adjust
AIRS-C5	OBC Cool	Blackbody heater is turned off	IR Linearity
		Integration time is varied on readout while	
AIRS-C6	Variable Integration Time	scanning	Electronics Linearity
			Noise Behavior (Pops, FPN, etc)
AIRS-C7	Space View Noise	The scan mirror is stopped and parked at OBCs	Drift Characterization
		Same test as AIRS-C7 but with radiation	
AIRS-C8	Radiation Circumvention	circumvention turned on.	Threshold Levels
			Stray Light
AIRS-C9	Scan Profile	Slow part of scan rotated to OBCs	Calibrator Centration
		Each of the three lamps are exercised by user	
AIRS-C10	Lamp Operations	command.	VIS Gains, VIS Noise
		Focal Plane Power is Cycled	FPA Functionality
AIRS-C11	Warm Functional	Test Pattern Gain Table Loaded	Data Stream Verification
AIRS-C12	Cold Functional	Same as AIRS-C11 except performed cold.	FPA Functionality

System Comprehensive Performance Tests (SCPT)

STS GROUP 1, 2, 3, AND 4 TESTS USED TO CONFIGURE INSTRUMENT GAINS AND ALIGN AMA

Group 1:	Warm Functional				
C11	Warm Functional		Test Pattern	time_hist, test_pattern, emc	
C10	VIS/NIR	All	C10 SNR on All Lamps	vis_snr	
Group 2:	Normal Mode Scienc	 e Data Acquis	sitions: 155K		
C1	3 Day Science Mode	Trial	Data Handling and Flow	image_sc, L1B PGE	Trial data set. Not calibrated
C2	Guard	All	Gain Check	gain, gain_ratios	Perform daily, watch for icing
Group 3:	Noise Acquisitions,	 55K			
C7	Space View Noise	A Space	A Noise in clean orbit	sv_nse, trend_params	One complete orbit required
		B Space	B Noise in clean orbit	sv_nse, trend_params	for each
		AB Space	AB Noise in clean orbit	sv_nse, trend_params	
		A Space	A Noise in SAA	rad_circ, rc_time_hist	Time history of noise
		B Space	B Noise in SAA	rad_circ, rc_time_hist	Determine tresholds
		AB Space	AB Noise in SAA	sv_nse, trend_params	
C2	Guard	All	Gain Check	gain, gain_ratios	Perform daily, watch for icing
Group 4:	AMA Adjust, 155K				
C2	Guard	All	Gain Check	gain, gain_ratios	
			X Position (AB Balance)	xdisp_offset	Determine x postion
			Y Position	gen_pary	Determine y position
C4	AMA Adjust	All	Move of AMA		
C2	Guard	All	Gain Check	gain, gain_ratios	
			X Position (AB Balance)	xdisp_offset	Determine x postion
			Y Position	gen_pary	Determine y position

STS GROUP 5, 6, AND 7 TESTS CHARACTERIZE INSTRUMENT PERFORMANCE

Group	5: G&C Table Validation				
C8	Radiation	A Space	A Noise in clean orbit	sv_nse, trend_params	Verify noise hasn't changed
	Circumvention	B Space	B Noise in clean orbit	sv_nse, trend_params	Verify noise hasn't changed
	On	AB Space	AB Noise in clean orbit	sv_nse, trend_params	Validate AB Optimum
		AB OBC	AB Noise in clean orbit	sv_nse, trend_params	Use for NEN vs Radiance
		A Space	A Noise in SAA	rad_circ, rc_time_hist	Validate Thresholds
		B Space	B Noise in SAA	rad_circ, rc_time_hist	Validate Thresholds
		AB Space	AB Noise in SAA	sv_nse, trend_params	Validate Thresholds
C2	Guard	All	Gain Check	gain, gain_ratios	Perform Daily
Group	6: Linearity and Stray Li	ght			
C5	OBC Float	All	Linearity, OBC Cal	obc_float	
C6	Variable Integration	All	Electronic Linearity	tint	
C9	Scan Profile	All	Stray Light Check	scan_prof	
C2	Guard	All	Gain Check	gain, gain_ratios	Icing and gain stability
Group	7: Channel Spectra Pha	se			
C3	Channel Phase Test	All	Determine Phase		Wait 3 Days after this test
			of Channel Spectra		and recheck AB Optimum
Post C	alibration Phase Tests				
C2	Guard	All	Gain Check	gain, gain_ratios	Perform Daily
					Next 30 Days
	Normal Mode			L1B PGE	L1B PGE Evaluations

SPECIAL TESTS PERFORMED IN FIRST 90 DAYS

Calibration S	Sequence Timeline			
Day	Cal Sequence	Group	Notes	
15	C11	1	Warm Functional	
18	C10	1	Vis/NIR	
39	C1, C2	2	Daily Guard, 3 Days First Light	
44	C2	2	Choke point heater adjust based on spectral info	
49	C7	3	Space View Noise Tests	
50	C2, C4	4	AMA Adjust	
53	C2, C8	5	Radiation Circumvention Tests	
54	C2, C4	4	AMA Adjust	
56	C2, C8	5	G&C Table Validation	
59	C2, C8	5	G&C Table Validation	
62	C2, C8	5	G&C Table Validation	
63	C2, C5, C6, C9	6	Linearity and Stray Light Tests	
65	C3	7	Channel Spectra Phase Test	
67	C2, C8	5	G&C Table Validation	
72	C3	7	Channel Spectra Phase Test	
90			AIRS Operational	

Note: G&C Table upload prior to G&C Table Validation

DATA ANALYSIS AND STAFFING RESPONSIBILITIES

C1: Pagano, Broberg

· C2: Broberg, Licata, Gaiser

· C3: Weiler

C4: Broberg, Gaiser

· C5: Hearty

· C6: Overoye

· C7: Weiler, Pagano

· C8: Weiler, Pagano

· C9: Overoye

· C10: Broberg, Hofstadter

· C11: Overoye

Sun Workstation (eosws2) Now online at GSFC Also we have MacX L0 to L1A: Manning, Ting

L1A2MAT: Licata

Telemetry: Broberg, Overoye

L1B QA Trending

· Spectral: Gaiser

· Radiometric: Broberg

· Spatial: TBD

· Cal Flags: Hearty

Operations Support at GSFC

· S. Gaiser

· T. Hearty Scheduled

· S. Broberg

· T. Pagano

• M. Weiler Event Driven

· K. Overoye

· S. Licata